The AMPKα1 Pathway Positively Regulates the Developmental Transition from Proliferation to Quiescence in Trypanosoma brucei.
نویسندگان
چکیده
During infection in mammals, the protozoan parasite Trypanosoma brucei transforms from a proliferative bloodstream form to a quiescent form that is pre-adapted to host transition. AMP analogs are known to induce quiescence and also inhibit TbTOR4. To examine the role of AMP-activated kinase (AMPK) in the regulation of this developmental transition, we characterized trypanosome TbAMPK complexes. Expression of a constitutively active AMPKα1 induces quiescence of the infective form, and TbAMPKα1 phosphorylation occurs during differentiation of wild-type pleomorphic trypanosomes to the quiescent stumpy form in vivo. Compound C, a well-known AMPK inhibitor, inhibits parasite differentiation in mice. We also provide evidence linking oxidative stress to TbAMPKα1 activation and quiescent differentiation, suggesting that TbAMPKα1 activation balances quiescence, proliferation, and differentiation.
منابع مشابه
Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei.
African trypanosomes are protozoan parasites transmitted by a tsetse fly vector to a mammalian host. The life cycle includes highly proliferative forms and quiescent forms, the latter being adapted to host transmission. The signaling pathways controlling the developmental switch between the two forms remain unknown. Trypanosoma brucei contains two target of rapamycin (TOR) kinases, TbTOR1 and T...
متن کاملEfficacy of repeated doses of diminazene aceturate (Dinazene®) in the treatment of experimental Trypanosoma brucei infection of Albino rats
The efficacy of repeated doses of Dinazene® in Albino rats experimentally infected with Trypanosoma brucei (Gboko strain) was investigated. A total of 30 adult female Albino rats weighing 130-190 g were used for the study. They were assigned to six groups (groups A-F) of five rats each. Groups A-D were infected intraperitoneally with 1.0 × 106 trypanosomes in 400 μL of PBS diluted blood while g...
متن کاملAMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis.
Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1-/- MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1-/- MuSCs sh...
متن کاملA novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway.
In the mammalian bloodstream, the sleeping sickness parasite Trypanosoma brucei is held poised for transmission by the activity of a tyrosine phosphatase, TbPTP1. This prevents differentiation of the transmissible "stumpy forms" until entry into the tsetse fly, whereupon TbPTP1 is inactivated and major changes in parasite physiology are initiated to allow colonization of the arthropod vector. U...
متن کاملHigh-Throughput Chemical Screening for Antivirulence Developmental Phenotypes in Trypanosoma brucei
In the bloodstream of mammalian hosts, the sleeping sickness parasite, Trypanosoma brucei, exists as a proliferative slender form or a nonproliferative, transmissible, stumpy form. The transition between these developmental forms is controlled by a density-dependent mechanism that is important for the parasite's infection dynamics, immune evasion via ordered antigenic variation, and disease tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2016